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There is theoretical evidence indicating that generic polygons do not admit eigenfunctions that are su-
perpositions of plane waves. However, we find that a plane-wave quantization for a family of polygonal
billiards gives results in very good agreement with theoretical predictions. Indeed the fraction of miss-
ing states decreases as the number of sides is increased. We provide a resolution of this contradiction:
While theory says that no plane-wave eigenfunctions are possible for polygonal boundaries, it is not ap-
plicable to the curvilinear boundaries approximating these polygons. This is analogous to the classical
mechanics of polygonal billiards, where according to continuum mathematics there is no chaos, yet
discrete mathematics finds it. In the quantum treatment considered here, according to continuum
mathematics there can be no plane-wave eigenfunctions, yet discrete mathematics finds them.

PACS number(s): 05.45.+b

I. INTRODUCTION

Billiards are an excellent tool to study the general
characteristics of dynamical systems since they exhibit a
wide spectrum of behavior, ranging from complete in-
tegrability (circular billiard) to fully developed chaos
(Bunimovich’s stadium [1]). Indeed, starting with
Birkhoff [2], physicists as well as mathematicians have
resorted to the study of these simple systems as a tool to
understand many global features of dynamical systems.
In particular, billiards inside polygonal enclosures have
proven to be particularly interesting for the almost con-
tradictory behavior they show. Even though with few ex-
ceptions they are neither integrable nor strictly chaotic
since they have null entropy, zero Lyapunov exponent
[3], and zero algorithmic complexity [4], they also have
been shown to mimic chaos when examined with finite
precision [5].

In quantum mechanics, the billiard problem has
proved to be an even more useful model because of its
paradigmatic simplicity. By semiclassical arguments
[6,7], it is always expected that the statistical properties
of spectra should be related to the regularity or irregular-
ity of the classical motion. In general for integrable sys-
tems one expects the nearest neighbor level spacings
(NNLS) to obey a Poisson distribution, while for chaotic
systems a distribution more along the lines of the Gauss-
ian orthogonal ensemble of nuclear physics (Wigner sur-
mise) [8] is more likely (though there are exceptions to
both cases). From triangles to the stadium and from
several different polygons to Sinai billiards, many calcula-
tions of the quantum spectra of billiards have been per-
formed to check the validity of that assumption. De-
pending on the boundary under consideration, several
methods are available to find the quantum spectrum of a
billiard. If we know a basis that vanishes on the bound-
ary, diagonalization methods are the standard procedure.
This is the case for triangular billiards [9] but not for gen-
eric billiards.

This leaves one with several approximation schemes.
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One method, originally developed by Riddell [10] based
on the Green’s function for the problem, transforms the
Schrodinger equation into an integral equation for a di-
pole distribution that ‘“‘generates” the wave function and
then discretizes this integral equation on the boundary.
This well developed method (which is sometimes cumber-
some to implement) has been used to compute eigenval-
ues of the stadium [11,12] and the spectra of several po-
lygons [13-17]. Variations of Riddell’s method have also
been used by Berry [18] to find the spectra of triangles.
Berry also used a variation of the Korringa-Kohn-
Rostoker method of solid state theory to find eigenstates
of the Sinai billiard [19] and also a polygonal version of it
[20]. An alternative method based on expanding the
eigenstates in a basis of adiabatic states has been success-
fully used to compute several low energy eigenstates of
different billiards (stadium [21-23] and rhombi [13]),
thus showing traces of separability in them.

Recently Heller [24,25] used an effective method to
find eigenvalues and eigenfunctions of a billiard. The
method assumes that the wave function can be expressed
as a superposition of plane waves traveling along different
directions but all having the same wave number k. The
eigenvalues and eigenfunctions are obtained by minimiz-
ing a parameter called the tension [24,25]. The results
agree very well with experiments [26—31]. There is just
one difficulty: for boundaries with sharp corners, like po-
lygons, it is conjectured that states could be missed,
namely, those states with complex k, and k, (evanescent
states); those states are not found because, simply, to
keep the search one dimensional (a considerable numeri-
cal advantage), one usually chooses real values of k, and
k,. Moreover, theoretical evidence seems to indicate [32]
that no plane-wave superposition can be the solution to
Schrodinger equation for a general polygonal boundary.

In this paper we quantize a family of multisided po-
lygons that mimic chaos in the classical case with as good
a precision as one may wish [5]. We first find that the
plane-wave method proposed by Heller agrees very well
with theoretical predictions, despite the apparent con-

1490 ©1995 The American Physical Society



52 PLANE-WAVE QUANTIZATION FOR POLYGONAL BILLIARDS

tradiction, with the mathematical results indicating the
contrary; indeed, the fraction of missing states decreases
as the number of sides is increased. After resolving this
contradiction, we show that the resulting spectra exhibit
level repulsion corresponding to the classically chaotic
dynamics. We restrict ourselves to the region of small
energies because that region in quantum mechanics cor-
responds to the finite precision necessary to see the chaot-
ic behavior in classical mechanics [5]. In Sec. II we de-
scribe the polygons we will be considering and state the
problem. In Sec. III we summarize the quantization
method. Section IV contains our results and their discus-
sion. Conclusions are in Sec. V.

II. DEFINITION OF THE PROBLEM

Classically the dynamics of polygonal billiards may ex-
hibit a wide range of behavior. Depending on the po-
lygon of choice, one may have a completely integrable
system (rectangle, right, and equilateral triangles) or a
system believed to be ergodic (irradiational polygon) [27].

For rational polygons [i.e., those whose angles a; obey
a;=(p; /q; ) with p;, q; integers], it has been proven that

11] (1)

F(p)=|@| mod o’

(with M being the least common divisor of the g;’s) is a
constant of motion [29]. In this expression ¢ is the initial
angle between the velocity of the particle and some fixed
direction in space. The existence of this constant of
motion implies that the system will evolve in phase space
on a invariant integral surface, the genus g given by [20]
N
M S pi—1
=14+—= _—, 2
g 2 igl q; )
where Ng is the number of sides of the polygon. The
mere existence of this constant of motion would seem to
indicate that the motion of this billiard has nothing
chaotic in it. However, in general this is not necessarily
true [4,5].

The solution of the quantum billiard problem in a po-
lygon P is then equivalent to the solution of Helmholtz’s
equation for the corresponding boundary; i.e., we want to
solve the equation

VW + k29 =0, (3)
where
27,2

subject to the boundary condition
W]ap =0 . )

From now on, we will consider the family of polygons
P, generated by circumscribing a rational polygon of n
sides around a stadium. Since the Hamiltonian for all of
these polygons is invariant under reflection both about
the x axis and the y axis, we will analyze a desymmetrized
version of the family of polygons, namely, P{?’ to remove
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FIG. 1. An example of the class of polygons we consider. In
the notation we use, this is P%, i.e., a desymmetrized version of
a polygon with 12 sides that approximates a stadium.

the degeneracies (see Fig. 1 for an example of the desym-
metrized version of P,). In this way we consider one
class of eigenstates, namely, those with odd-odd symme-
try. It is worth mentioning that from a classical point of
view these billiards mimic chaos so well that they are in
some aspects indistinguishable from a truly chaotic sys-
tem [5].

III. NUMERICAL METHOD

We begin by summarizing Heller’s method to find the
eigenvalues and eigenfunctions of a billiard (the reader in-
terested in learning more technical details should refer to
the literature [24-26]). Since the Hamiltonian is invari-
ant under time inversion, the wave function ¥(x,y) has
to be real. Then, calling the eigenvalue k, we propose the
solution

M
Vi (x,y)=T3 a;sin(k{"x)sin(k{"y) , (6)
=1

where for any value of / it is true that
k(1)2+k(1)2:k2 7
X y .

This ansatz corresponds to a superposition of M plane
waves, all with the same wave number but different direc-
tions of propagation. Obviously, this is a solution of
Helmholtz’s equation for the interior of the billiard for
any selection of the coefficients a;. The only errors will
occur on the boundary. Our purpose is to find a solution
that vanishes at every point on the boundary. In practice
this is impossible; the best we can hope for is that our
solution will vanish at M’ points on the boundary in-
stead. If these points are taken so that they are closer to-
gether than the wavelength by a factor of 3 or so, we can
be confident that the quantum mechanics is actually “see-
ing” the boundary rather than the individual points
[24,25]. We set the wave function to 1 at an arbitrary
point inside the region. We then solve the resulting inho-
mogeneous system of equations for the a;’s by singular
value decomposition.

We still need to check that our solution is appropriate,
i.e., that the boundary conditions are approximately
satisfied at other points of the boundary. To this end we
first normalize the wave function and then compute the
“tension” [24-26], namely,
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8M
ol k)= [Wi(x;,y)]*, (8)
i=1
where the points (x;,y;) are on the boundary. This func-
tion is found to have deep minima as a function of k. The
values of k corresponding to those minima are the eigen-
values of the corresponding billiard. Moreover, since the
trial function of Eq. (6) is by definition zero on the
two axes, we only need to analyze the tension on the up-
per boundary.

IV. RESULTS AND DISCUSSION

A. Calculations

We have used Heller’s method to find the spectra of
different polygons. To check how many eigenstates we
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FIG. 2. Comparison of our numerical results for n =5 with
Weyl’s law for P{2: (a) comparison of the integrated density of
states; (b) fraction of missing states F(E).
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are missing, we compared the integrated density of states
N(E) computed numerically,

N(E)= S O(E;—E), )
E,<E

with the average integrated density of states N(E), given

by Weyl’s law,
NE=AE-LVvE+k,

4 4T

where A is the area of the billiard, P is its perimeter, and

K is a constant that depends on the curvature and the an-

gles of the corners [33]. We also define the fraction of

missing states as F(E),

pg)= NE)-NE)

N(E)

(10)

(11)

(a) Comparison for n = 25

| Weyl's law _
- Heller's method - -

250.0

200.0

150.0

N(E)

100.0

50.0

TN T T T I T T O O O A O
.

0.0 (T T T T T TT YT T T I T[T T T[T T T T T T 7T T 17T
0.0 250.0 500.0 750.0 1000.0 1250.0 1500.0 1750.0 2000.0

(b) Comparison for n = 25

0.5

0.4

0.3

F(E)

0.2

0.1

TN TN O O T W I U O N AN A B O AN N B O

0.0 LI B N e I R I B N
0.0 500.0 1000.0 1500.0 2000.0 2500.0

E

FIG. 3. Same as Fig. 2, except for P{2’ and for n =25.
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and study its convergence as we increase the energy.

In Figs. 2—4 we compare our numerical calculation for
N(E) with N(E) from Weyl’s law for three polygons,
namely, P\2’, P2, and P!2). Figure 2(b) shows that the
fraction of missed eigenstates for P2’ oscillates around
12% of the average total given by Weyl’s law without
really stabilizing. In fact, one can see a trend toward
more and more missed states. In Fig. 3(b) we can see that
for P{Y the integrated density of states stays very close to
Weyl’s law for very low energies (up to about 600). The
fraction of missing states starts also to oscillate without
stabilizing around 9%, i.e., a behavior somewhat similar
to P{2) but with smaller fractions. One can see that the
fraction tends to increase, but the rate is somewhat less
steep than in the case of P{2’. In contrast, Fig. 4(b)
shows that for P{2) the fraction of missing states finally
stabilizes at around 2% of the total average number of

states. One can compare this result with the 2%
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FIG. 4. Same as Fig. 2, except for P{2} and for n =175.
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difference obtained in Ref. [17] using the Green’s func-
tion method for several nonintegrable polygons: there is
actually not much of a difference in precision. Apart
from some remaining evanescent states, accidental degen-
eracies [18] account for our missing some eigenstates; one
notices, however, that none of the aforementioned
methods would be able to resolve this kind of degeneracy.

In Fig. 5 we show a typical nodal line distribution for
P{2). One can see that the nodal line structure looks er-
ratic, resembling that of a fully chaotic system [11,12].
Moreover, the boundary is very well reproduced by the
approximated solution.

Theoretical evidence has been given [32] indicating
that, with the exception of the rectangle and a few trian-
gles, no polygonal billiard has a solution expressible as a
sum of plane waves (finite or otherwise). It is usually
stated in the following way: for a superposition of plane
waves to be nonzero at a vertex, the vertex has to have an
angle of m/n. This can also be understood in terms of a
theorem in analysis [34,35], which states that any solu-
tion of the Helmholtz equation with the appropriate
boundary conditions can be represented as an integral
over the angular spectrum of plane waves, i.e., an integral
over the angle of the direction of propagation of plane
waves along some path in the complex plane. If we allow
the angle to take complex values, we obtain the evanes-
cent state contributions to the spectrum (see, for exam-
ple, Refs. [35,36]). These evanescent contributions con-
stitute the difference between the true eigenfunction and
a sum of plane waves. Since we do not include evanes-
cent waves in our basis (both k, and k, are taken as real),
we could miss states [25,26] or miss contributions to the
eigenfunctions. The question is this: How many of those
states do our polygons hold? Or phrased differently, how
important is the contribution of these evanescent waves
to the spectrum of our polygons?

As has been argued before [25,26], these evanescent
waves will be more significant near the corners. Howev-
er, the evanescent contribution will depend on the angle
of the corner in such a way that the closer it is to , the
smaller the evanescent contribution will be. Then in such
a limit one expects the eigenstates to look increasingly
like a superposition of plane waves. In that case the
plane-wave method should work better, as it indeed does,

FIG. 5. Nodal line obtained from the plane-wave quantiza-
tion of P{%’ (the polygon in Fig. 1). One can see that the bound-
ary is well reproduced by the wave function. The nodal lines
look as erratic as those for a truly chaotic system.
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as we increase the number of sides. To check that this
approximation yields the correct results, one can solve
the Helmhotz equation by the plane-wave method for
different wedges (with angle n7/m) and compare the ap-
proximated solution with the exact solution.

In Figs. 6 and 7 we show this comparison for two
different wedges. In these figures we have plotted both
solutions (the exact and the approximated) as functions of
the radial coordinate only, taking a fixed value for the an-
gular coordinate; the actual value of the angular coordi-
nate does not appreciably change the relationship be-
tween the two functions. One can see that the approxi-
mated solution and the exact solution (Bessel function)
behave exactly the same. The nodal lines manifest some
difference close to the vertex, but this difference decreases
as the angle approaches ; indeed, for the wedge in Fig. 6

(a)

5.0
Analytical Solution —

Plane Wave Solution --- (b)

2.5

0.0

¥(kr)

[ A A I B A A A A NN A I A A A A

FIG. 6. Comparison of plane-wave solutions with analytic
solutions for two wedges with different angles a=mmx/n. (a)
Nodal line of the plane-wave solution for a=2#/5. One can see
that the only appreciable differences occur near the corner. (b)
Comparison of the true eigenfunction and the corresponding
plane-wave solution for the eigenfunction plotted in (a). One
can see that even though the qualitative behavior is quite simi-
lar, the two functions are very different quantitatively. In both
functions we have considered the variation with the radial coor-
dinate only, taking the angular coordinate as a constant.
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the difference between the two functions may increase up
to 60%, while for the wedge in Fig. 7 the maximum
difference between the two is of the order of 7.5%. Still it
may be argued that the boundary one quantizing with
this method is not exactly the polygon of interest but a
nearby continuous curve. At this point one can use a
theorem that states that for a Dirichlet prob-
lem, such as the one we are considering, the eigenvalues
vary continuously with the boundary under very broad
conditions [37]. Thus the eigenvalues computed by this
method will converge to the actual eigenvalues if we take
enough points, namely, if we take enough plane waves.
The curvilinear character of the boundary on which the
wave function vanishes is the real reason there is no
conflict between our results and those of Ref. [32]. If one
looks back at Fig. 5 one can see that the actual boundary
of the polygon is very well reproduced by the approxi-
mated solution.
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FIG. 7. (a) Same as Fig. 6(a) for a =41 /5. In this case the re-
gion in which the nodal lines show differences is a little smaller
than in the case of a=2#%/5. (b) Same as Fig. 6(b) for the eigen-
function plotted in (a). In this case the true eigenfunction and
the plane-wave approximation coincide both qualitatively and
quantitatively. In both functions we have considered the varia-
tion with the radial coordinate only, taking the angular coordi-
nate as a constant.
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B. Statistics

We now proceed to the statistical properties of the ei-
genvalues. For this purpose we need to “unfold” the
spectrum to be sure that the average spacing is 1 for all
the polygons and thus compare the behavior of the
different spectra. We first compute the unfolded, spec-
trum ¢; by

€,=N(E;), (12)

where N(E) is given by Weyl’s law. We then define the
spacings s; as

S =€i+17€; (13)

and find P(s), the distribution function for the spacings s.

Since the calculations for P{2) and P2, show a large
number of missing stages, we will analyze only the
nearest-neighbor level spacing distribution (NNLSD) for
the other polygon. In Fig. 8 we show the level statistics
(histogram) obtained for P{2). As one can see, the statis-
tics show strong level repulsion. This result, which is in
agreement with the underlying chaotic dynamics, has
also been observed for different kinds of nonintegrable
polygons like triangles [9] or rhombi (see, for example,
[13,14,17,16]). In the case of the rational rhombus
[13,14], for example, the statistics look similar to ours,
with the difference being that the level repulsion is not so
strong. The fitting to Wigner’s surmise is not so close ei-
ther. It is worth noticing also that we are far from the
semiclassical limit; in fact, we are only considering levels
in the “deep quantum region.” This is somewhat similar
to the case of the generalized Sinai billiard studied by
Cheon and Cohen [34]. The difference is that, in our case,
both the genus and the number of singular points of the
boundary are much higher. We find similar results when

1.0
experimental data ——

~] Wigner's distribution — -

\5
0.0 LN I S N N N N ISR B O Y N B |

0.0 1.0 2.0 3.0 4.0 5.0

s
FIG. 8. NNLSD for the lowest first 210 eigenstates of P{2).
We have discarded the first 50 states to ensure the constancy of
the level spacing. The dashed line is the prediction of the
Gaussian orthogonal ensemble (Wigner surmise).
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analyzing similar polygons with an even larger number of
sides.

V. CONCLUSIONS

Our results show that plane-wave quantization is appli-
cable for polygons, provided that the angles at the ver-
tices are not too far from 7. In fact, as previously men-
tioned, the actual curvilinear boundary on which the
eigenfunction vanishes will be increasingly similar to the
polygon as we increase the number of points on the
boundary (and consequently the number of plane waves
in the expansion). Consequently, the difference between
the actual eigenvalues and the ones obtained from plane-
wave quantization will be negligible if one takes enough
points [37]. It is worth mentioning that we are not in the
semiclassical limit but rather in the limit of “poor resolu-
tion of the boundary by the wave function.” In a nutshell,
one could say that even though the theoretical results
seem to be quite restrictive, for any practical purpose one
can use a plane-wave quantization for polygonal boun-
daries without any severe loss of information. This is
analogous to the classical treatment of polygonal bil-
liards, in which according to continuum mathematics
there is no chaos, yet discrete mathematics finds it [5]. In
the quantum case treated here, according to continuum
mathematics there can be no plane-wave eigenfunctions,
yet discrete mathematics finds them. The theory is not
applicable to the continuous boundary on which the ap-
proximating wave function vanishes, so our findings do
not contradict it.

Regarding the level statistics, one can see that for our
polygons it shows level repulsion. This is consistent with
the mimicking of chaos observed in the classical case.
These results are consistent with others in the literature
(see, for example, [13,14,16,17,34]) and confirm that sys-
tems containing invariant integral surfaces with genus
larger than 1 show level repulsion in quantum mechanics.
However, this rule is still qualitative. We still do not
have a way of associating a definite law of repulsion with
a definite genus. A question that one could ask is this:
Does the number of singular points in the boundary
matter?

Shudo and Shimizu [16] showed that for the case of the
rhombus, rational or otherwise, the level statistics, even
though it shows a strong level repulsion, as mentioned be-
fore, deviates appreciably from Wigner’s surmise. Our
results, together with those of Cheon and Cohen [34] for
the generalized Sinai billiard, suggest that the existence
of more singular points will somehow enhance the level
repulsion. In fact, if one compares these two cases with
the rhombi, for example, the level repulsion is stronger in
the systems with more singular points. This is analogous
to the classical case: there the existence of singular
points causes the mimicking of chaos (they are responsi-
ble for the divergence of the trajectories); genus alone is
not enough. It has been suggested [17] that the results
obtained by Cheon and Cohen [34] are related to the ex-
istence in their case of convex corners that split the band-
ed trajectories that will, otherwise, move in a rectangular
(integrable) billiard. Our results show that one can ob-
tain the same kind of statistics in polygonal billiards
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without any convex corner if the number of singular
points is high enough. :

However, there is still much to be done. A more de-
tailed analysis of the rigidity as well as the NNLSD up to
energies in the semiclassical region should provide more
information on where, if anywhere, this classical mimick-
ing of chaos starts to be relevant in quantum mechanics.
Furthermore, an analysis of the statistical properties of
systems with the same genus but different number of
singular points should shed more light on the issue of
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which one is the classical feature (if any) that defines the
statistical properties of almost integrable systems.

Note added. After this work was finished we
discovered Ref. [38], in which it is shown that the solu-
tions of Helmholtz’s equation inside polygonal regions
can always be expanded in plane waves if one allows for a
somewhat singular expansion. This then indicates that
the differences between the exact and the approximated
solutions in Figs. 6 and 7 are just a measure of this singu-
larity.
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